Оглавление

Предисловие 7		
Часть	I. Основные идеи и понятия группового анализа	15
Лекци	я 1. Группы преобразований	16
1.1.	Замена переменных в дифференциальном уравнении .	16
1.2.	Группа симметрий	17
1.3.	Группы эквивалентности	18
1.4.	Подмодели	20
1.5.	Дискретные и непрерывные группы	22
Лекци	я 2. Базовые идеи	25
2.1.	Уравнение = поверхность	25
2.2.	Преобразования и траектории	27
2.3.	Автономное дифференциальное уравнение	28
2.4.	Порождающее векторное поле	29
2.5.	Порождающий дифференциальный оператор	32
2.6.	Продолжение на производные	34
2.7.	Действие дифференциального оператора	36
Лекци	я 3. Основные формулы и их применение	40
3.1.	Уравнение первого порядка	40
3.2.	Многомерный случай	43
3.3.	Локальная аппроксимация группы	44
3.4.	Второе продолжение	47
3.5.	Уравнение второго порядка	48
Лекци	я 4. Группа эквивалентности	54
4.1.	Порождающее векторное поле и оператор	54
4.2.	Формула для компоненты ϕ	56
4.3.	Независимость правой части от производной	58
44	Вычисление группы эквивалентности	59

4.5.	Структура группы эквивалентности	62
Часть	II. Техника группового анализа	65
Лекция	я 5. Технология классификации	66
5.1.	Краткое содержание предыдущих серий	66
5.2.	Линейный случай	67
5.3.	Нелинейный случай	68
5.4.	Случай I.2.1	70
	5.4.1. Редукция	71
	5.4.2. Если $f_0 \neq 0$	72
	5.4.3. Если $f_0 = 0$	73
	5.4.4. Если $k = -3$	74
	5.4.5. Ревизия	76
	5.4.6. Реверс: двигаемся от группы	77
	5.4.7. Завершение Случая I.2.1	78
Лекция	я 6. Алгебры Ли	81
6.1.	Целостный взгляд	81
6.2.	Однопараметрические не-группы	83
6.3.	Коммутатор	84
6.4.	Конечномерные алгебры в \mathbb{R}^1	86
6.5.	Вещественная классификация	88
6.6.	Конечномерность группы симметрий	89
6.7.	Классификация групп в \mathbb{R}^2	93
Лекция	я 7. Группы и геометрия	97
7.1.	Геометрия сферы	
7.2.	Сфера и плоскость	
7.3.	Метрическая форма	
7.4.	Преобразования римановой метрики	
7.5.	Преобразования в канонических метриках	
7.6.	Инверсии	
7.7.	Проективная группа	
Поким	я 8. Таблица коммутаторов	111
я.1.	Подалгебры и коммутаторы	
8.2.	Конформная алгебра. Трехмерный случай	
8.3.	Получение анзаца решений	
8.4.	Решение уравнений	
8.5.	Преобразования конформной группы	
8.6.	Таблица коммутаторов	
0.0.		

Часть III.	Групповой анализ	125
Лекция 9.	ГК уравнений эйконала 1	126
	внение эйконала	
9.1.1.		
9.1.2.	Уравнение эйконала и геометрия лучей	
	Постановка задачи	
	пы симметрий и эквивалентности	
	па эквивалентности	
	еделяющие уравнения ГС	
9.4.1.		
Лекция 10.	ГК уравнений эйконала (продолжение)	139
10.1. Перв	вичная сепарация	139
10.1.1	1. Случай $A'^2 + B'^2 + C'^2 \not\equiv 0$	140
	2. Случай $A'=B'=C'\equiv 0, E'^2+F'^2+G'^2\not\equiv 0$	
10.1.3	3. Случай $A' = B' = C' = E' = F' = G' \equiv 0, D' \not\equiv 0$	143
10.1.4	4. Случай $A' = B' = C' = E' = F' = G' = D' \equiv 0$,	
	$H'^2 + I'^2 + J'^2 \not\equiv 0 \dots \dots \dots \dots \dots$	143
10.1.5	5. Случай $\xi_{\psi}=\eta_{\psi}=\zeta_{\psi}\equiv 0$	
10.2. Особ	ые случаи функции скорости	143
10.2.1	1. Случай $v(x,y,z)\equiv 1$	144
	v(x,y,z)=x	
10.2.3	3. Случай $v(x,y,z) = x^2 + y^2 + z^2 \pm \nu^2$	146
10.2.4	4. «Тонкая очистка» особых случаев	149
	ГК уравнений эйконала (окончание)	
11.1. Втор	оичная сепарация	151
	I. Случай функции (10.7)	
	2. Случай функции (10.6)	
	 Случай функции (10.5) 	
_	внение ветвления	
	лай $\xi_{\psi}=\eta_{\psi}=\zeta_{\psi}=0$	
	нчательная классификация	
11.5. Форм	мулировка теоремы	163
	Групповой анализ и синтез	
	такое групповой синтез?	167
-	внения с 15-мерной группой	
	иетрий	
	I. Геометрия	
19 9 9) физика	168

12.2.3. Интегрируемость	169
12.2.4. Иллюзия движущегося источника	171
T 10 D	1 = 0
Лекция 13. Групповой синтез (окончание)	178
13.1. Уравнения с 4–6-мерной группой	1 = 0
симметрий	
13.1.1. Физика	
13.1.2. Интегрируемость	
13.1.3. Двумерное уравнение эйконала	
13.1.4. Геометрия	
13.1.5. И еще раз об интегрировании	
13.1.6. И еще раз физика	
13.2. Принципы группового анализа	190
Часть IV. Теория Ли	195
Лекция 14. Многомерные группы	196
14.1. Постановка проблемы	
14.2. Основные уравнения	
14.3. Теорема Фробениуса	
14.4. Доказательство теоремы	
14.5. Условие разрешимости системы (12.1)	
The contains people in motion of the contains (12.11)	200
Лекция 15. Автоморфизмы	209
15.1. Действие группы на себя	209
15.2. Группа и ее представление	210
15.3. Группа автоморфизмов и ее алгебра	211
15.4. Канонические переменные	212
15.5. Сведение к линейной системе	216
15.6. Тождество Якоби	217
Лекция 16. Теоремы Ли	221
16.1. Решение линейной системы	
16.2. Свойства функции $U(u)$	
16.3. Теоремы Ли	
16.4. Комментарии	220
Лекция 17. Классификация алгебр Ли	230
17.1. Орбиты и группы голономии	230
17.2. Двумерные группы	232
17.2.1. Случай коммутативной группы	
17.2.2. Случай некоммутативной группы	
17.3. Классификация трехмерных алгебр	236

	17.3.1. Доказательство. Условие наличия коммутатив-	
	ной подалгебры	37
	17.3.2. Доказательство теоремы. Алгебры с коммута-	
	тивной подалгеброй	38
	17.3.3. Случай алгебры, не имеющей коммутативных	
	подалгебр	11
17.4.	Реализации трехмерных групп	13
Лекция	и 18. Геометрия группы	Į 7
18.1.	Групповая метрика	17
18.2.	Инвариантные римановы метрики для двумерных и	
	трехмерных групп	50
18.3.	Двойственная алгебра	51
18.4.	Инвариантные кривые	54
18.5.	Уравнения Френе	56
Часть `	V. Ипостаси группового анализа26	1
Лекция	и 19. Касательные преобразования26	2
	«Группа в себе»	
19.2.	Уравнение второго порядка	34
19.3.	Теорема Бэклунда	36
	Преобразования Ли-Бэклунда	
19.5.	Второй закон Ньютона	70
19.6.	Принцип относительности для $F=ma$	73
Лекция	и 20. Инварианты	' 9
20.1.	Конформные преобразования плоскости	31
20.2.	Инварианты группы эквивалентности	34
20.3.	И снова геометрия	38
Лекция	и 21. Инварианты (окончание)29	1
21.1.	Геометрические инварианты)1
21.2.	Сводимость к плоскому слоению)3
21.3.	К проблеме эквивалентности	98
21.4.	Уравнение с квазиплоским слоением)(
21.5.	Теорема о семи инвариантнах)4
Лекция	и 22. Проблема физического смысла	9
22.1.	Эвристические принципы и физический смысл 30	9
22.2.	Проблема Максвелла	LC
22.3.	Математическая постановка	L4
22.4.	Трансформация постановки задачи	17

ГЛAВЛЕНИЕ

22.4.1.	Первая постановка задачи. Эффект всеобщей
	эквивалентности
22.4.2.	Вторая постановка задачи
22.4.3.	Третья постановка задачи. Условие инвариант-
	ности интегрирования «по c »
22.4.4.	Четвертая постановка задачи. Условие инвари-
	антности числа частиц
22.4.5.	Пятая постановка задачи. Куда поставить про-
	извольную функцию?
Заключение	328
Литература	329
Приложение	е І. Классификация ОДУ 2-го порядка332
Приложение	е II. Дву- и трехмерные алгебры 334
-	рные алгебры
	ерные алгебры
Приложение	е III. Инвариантные метрики
Предметный	указатель341